Creating a More Sustainable World in 3D

Do you see your world in 3D…Where the dimensions of economy (profit), environment (planet), and society (people) are equally considered in the realization of your manufactured product? Traditional approaches to manufacturing have relied far too heavily on resource intensive processes that don’t always balance the needs of society with the profit goals of the enterprise or the environmental protection that is required for the earth to maintain a healthy and vibrant ecosystem.

Manufacturing enterprises have become substantially more resource efficient and operationally intelligent in the past Century. Compared to the way Additive Manufacturing and 3D printing can enable, there hasn’t been as dramatic an opportunity for industry to realize transformational shifts in resource utilization, since the invention of the steam engine.

Additive manufacturing (AM) takes advantage of various processes used to make three-dimensional objects in which successive layers of materials are laid down under computer control. The objects can be of almost any shape or geometry, and are produced from a 3D model or other electronic data source. AM technologies and processes are now used in a wide-range of industries and to design, engineer, and manufacture higher-performance products. AM technologies and approaches include stereolighography (SLA), selective laser sintering (SLS), and direct metal laser sintering (DMLS).

Recent advances in topology optimization can, when blended with AM, provide the means for producing a new generation of engineered parts and products. A few  years ago, AM and 3D printing were widely viewed as prototype-exclusive tools due to their relative high cost, limited material and finishing capabilities.

Definition:
TOPOLOGY: the way in which consistent parts are interrelated or arranged.

Today, AM and 3D printing tools and equipment can, when integrated with software for topology optimization, revolutionize the way in which products are designed, prototyped, and manufactured. AM and 3D printing provide unparalleled opportunities and freedom to product designers. AM and 3D printing are near a convergence point in assimilating a suite of software, materials, techniques, and finishing options that can springboard this novel technology into the forefront of sustainable product design and manufacturing.

As AM and 3D printing integrate science and technology into superior manufacturing capabilities, the only limiting factor will be our imagination. AM and 3D printing allow for the design, development, and manufacturing of more complex shapes and topographies which result in customized products at faster manufacturing cycle times.

Slide1

The flexible design and production freedom of AM can enable sustainable design and manufacture of products. AM offers a new way to achieve competitive advantages in product design and manufacturing by addressing:

AM delivers the means for designers, manufacturers, and society to visualize, advance, and accelerate the realization of manufactured products across three dimensions (people, planet, and profit). As shown in the visual, the opportunity and scale of sustainability potential and impacts is magnified as AM and 3D printing are used from the onset, and across the product development life-cycle.

Do you see your world in 3D

Ultimately, the use of AM results in competitive advantages related to operational efficiency (i.e., achieving lower cost of manufactured goods) and development of products that achieve a differentiated and sustainable product performance advantage (i.e., products that are stronger, faster, lighter, use less energy, use less materials, etc.). Finally, the unique capabilities of AM can support a circular economy, one which is restorative, less depletive, and leverages the elegant capabilities of AM to support or enable sustainable design, sustainable manufacturing, sustainable product realization, and product remanufacturing.

‹ Back To All Blog Posts
as9100_white

The Aviation Industry is highly regulated with demands and controls that ensure the safety and reliability of equipment and materials. Our aviation, space and defense customers can be confident that HARBEC retains a certified Quality Management System which is well implemented and designed to deliver increased customer satisfaction as a natural by-product of tracking key quality goals of on-time delivery and compliant product to our customers. Our processes are monitored to improve efficiency, ensure product safety and reliability while continually improving.

More Information >

ISO143852016_white

The Medical Industry is highly regulated with demands and controls that ensure regulatory requirements and customer expectations are met. Our medical device customers can be confident that HARBEC retains a certified Quality Management System which is well implemented and designed to deliver increased customer satisfaction as a natural by-product of tracking key quality goals of on-time delivery and compliant product to our customers. Our ISO 13485 management system adopts a risk management approach which, while having these controls in place, eliminates hazardous situations throughout the product realization process.

More Information >

ITAR_Logo_65x65_white

HARBEC is a registered ITAR company. International Traffic in Arms Regulations (ITAR) is a set of United States Government regulations on the export and import of defense related articles and services. Our Defense and Military customers can have complete confidence that HARBEC has an established and implemented ITAR compliance program and adhere to the strict guidelines set forth by ITAR and EAR statutes.

More Information >