Let's Connect
Let's Connect
Which of our services are you interested in?
Injection MoldingMachiningAdditive (3D)Other
Subscribe to our email list. Your email address will be kept secure and confidential.
Banner Image

Additive (3D)

For over 20 years HARBEC has been at the forefront of Additive Manufacturing technology and methodology.  Technology that was once viewed as rapid prototyping has evolved and is now capable of producing functional parts in larger quantities.  Let our Additive experts help you make high quality parts while reducing time and cost.

Design and Innovation Freedom:

Designers are no longer limited by subtractive manufacturing or complex assembly processes.  You can now grow your parts with the geometry and material you need.  Whether you need specific internal features in your part or conformal cooling flow paths for your molds, HARBEC can help.  By leveraging HARBEC’s additive and machining capability, you can have both the internal features and the external finish and tolerances your design demands.


Let us take your concept, and bring it to life. HARBEC strives to incorporate designs from nature to improve the performance of your part. Already, we’ve received grants funding biomimetic research into its application on mold design. Using a leaf for inspiration, we applied the vein structure to the back side of the mold cavity, and were able to decrease the cycle time by 20% as a result.  Click here for more information. 

Precision Prototypes:

From a few days to a couple of weeks, HARBEC can provide functionally correct, dimensionally accurate engineering prototypes from your supplied CAD files. The prototypes and models from HARBEC are working, engineered components that will demonstrate all of the requirements for the eventual production part.

HARBEC employs many leading-edge technologies to offer the best and most contemporary capabilities to our customers. Discover more about HARBEC’s Manufacturing Solutions including:


Part Parameters

Process Machine Materials Build Volume Cosmetics Layer Height
FDM Markedforged
Mark Two
Nylon (with optional carbon fiber infill)
320 x 132 x 154 mm
(12.6 x 5.2 x 6 in)
Fair 0.1 mm
SLS HP Jet Fusion 3D 4200 Nylon PA12 284 x 380 x 380 mm
(11 x 14.9 x 14.9 in)
Fair 0.08 mm


Maraging Steel
250 x 250 x 325 mm
(9.85 x 9.85 x 12.8 in)


0.02 – 0.03 mm




3D Systems Projet6000 Accura 25 (formerly VisiJet SL Flex) 250 x 250 x 250 mm
(9.85 x 9.85 x 9.85 in)
Excellent 0.05 -0.025 mm
Formlabs-Form2 Tough
High Temp
Standard Resin (Black, Grey, White, Clear)
145 × 145 × 175 mm
(5.71 x 5.71 x 6.89 in)
Excellent 0.05 -0.025 mm
POLYJET Stratasys-
Digital ABS 500 x 400 x 200 mm
(19.6 x 15.7 x 7.8 in)
Excellent 0.016 mm

At HARBEC, we deliver precision components and prototypes, using a variety of manufacturing methods. Our dynamic range of Rapid Prototype solutions, coupled with capabilities in precision tools and molds and Injection Molding, enables us to offer a complete solution for customers in one location. HARBEC also provides the following Design Support:

Part Design Optimization

  • Performance
  • Appearance
  • Manufacturability

Tool Design

  • Tool Life vs. Tool Cost
  • Tool Cost vs. Part Cost

Material Specification

  • Cost vs. Performance
  • Supply Risk Mitigation
  • Bioresins

From initial design and concept modeling stages, through advanced production tooling requirements, to low or high volume production injection molding and secondary processes, HARBEC takes full responsibility for meeting our customer’s requirements. HARBEC creates value for our customers by reducing manufacturing risk through innovation, superior technical knowledge, and application of state-of-the-art equipment, materials, and know-how.

Please fill out this form to receive a quick quote for your product.

  • Selective Laser Sintering

    Build Plastic Parts with Our Selective Laser Sintering
    Laser-sintering is well known as the technology of choice for ensuring the quickest route from product idea to market launch. Selective Laser Sintering (SLS) is an additive process where layers of powder are deposited, then solidified with a computer-driven laser to form a 3D model. Selective Laser Sintering produces complex and finely featured parts with exceptional accuracy and unlimited design flexibility. Part stacking and nesting means faster build times, more productivity and less waste, making SLS a practical process for low volume production parts. Because SLS prototypes and parts are not cut from stock, less material and less energy is used.

    Get A Handle On Your Ideas… Within A Week!
    Going to a show and need to have fully functional parts? Call us. We will work with you to meet your rapid product development schedule. With the capacity of two 3D Systems Sinterstations, we offer more material choices, more flexibility, and more benefits than ever before. From one to one hundred thousand pieces, we will deliver just what you need when you need it.

    Transform 3D Data to Dimensional Objects Quickly
    Turn 3D data into three dimensional plastic, elastomer, or metal objects utilizing any, or a combination, of our advanced technologies. Parts from HARBEC’s new SLS equipment build up to 11″ x 13″ x 17″ and require no support structures. The variety of SLS materials available and the accuracy of the process allow parts to imitate, or actually be final products. To expedite your design process, HARBEC’s Real-Time Collaboration program enables you to work out details with our design engineers and our expansive library allows us to translate over 50 CAD file types.

    Our Rugged Materials Will Withstand Rigorous Testing
    With SLS, a wide range of materials such as nylon-like polyamides, glass-filled polyamides, and rubber-like elastomers are available. SLS prototypes are built of rugged materials that will withstand aggressive functional testing under a variety of conditions. This allows designers the ability to refine and verify the part design. SLS parts resist heat and chemicals, are impervious to water, can be painted or dyed, readily joined mechanically or by adhesives and are able to be machined, and welded. The long-term stability of many materials means parts can be used in final applications.

    The Simple SLS Process:

    1. Start with your 3D CAD data.
    2. Enter the data into the Sinterstation.
    3. As the process begins, a precision roller mechanism automatically spreads a thin layer of powdered SLS material across the build platform.
    4. Using data from the generated STL file, a CO2 laser selectively draws a cross-section of the object on the layer of powder. As the laser draws the cross-section, it selectively “sinters” (heats and fuses) the powder creating a solid mass that represents one cross-section of the part.
    5. The system spreads and sinters layer after layer until the object is complete.
    6. Remove the part.

  • Stereolithography

    Stereolithography is an additive manufacturing process which employs a vat of liquid ultraviolet curable photopolymer “resin” and an ultraviolet laser to build parts’ layers one at a time. For each layer, the laser beam traces a cross-section of the part pattern on the surface of the liquid resin. Exposure to the ultraviolet laser light cures and solidifies the pattern traced on the resin and joins it to the layer below.

    After the pattern has been traced, the SLA’s elevator platform descends by a distance equal to the thickness of a single layer, typically 0.05 mm to 0.15 mm (0.002 to 0.006 in). Then, a resin-filled blade sweeps across the cross-section of the part, re-coating it with fresh material. On this new liquid surface, the subsequent layer pattern is traced, joining the previous layer. A complete 3D part is formed by this process. After being built, parts are immersed in a chemical bath in order to be cleaned of excess resin and are subsequently cured in an ultraviolet oven.

    Stereolithography requires the use of supporting structures which serve to attach the part to the elevator platform, prevent deflection due to gravity and hold the cross sections in place so that they resist lateral pressure from the re-coater blade. Supports are generated automatically during the preparation of 3D Computer Aided Design models for use on the stereolithography machine, although they may be manipulated manually. Supports must be removed from the finished product manually, unlike in other, less costly, rapid prototyping technologies. Wikipedia

  • Direct Metal Laser Sintering

    Build Metal Parts with Our Direct Metal Laser Sintering
    Take advantage of HARBEC’s EOSINT M 290 and EOSINT M 270 laser sintering systems for the production of tooling inserts, prototype parts and direct manufactured parts in various metals. The Direct Metal Laser Sintering (DMLS) technology fuses metal powder into a solid part by melting it locally using a focused laser beam. Similar to SLS, the parts are built additively: layer by layer. Even highly complex geometries are created directly from 3D CAD data, automatically, in just a few hours without any tooling. It is a net-shape process, producing products with high accuracy and detail resolution, good surface quality and excellent mechanical properties. A wide variety of metals can be direct metal laser sintered, ranging from light alloys via steels to super-alloys and composites. DMLS is widely used to produce positive parts directly from CAD data. The components can be prototypes, series production parts or even spare parts. DMLS is also well known as a leading technology for tool making using an application known as DirectTool. With its high accuracy and surface quality, the direct process eliminates tool-path generation and multiple machining processes such as EDM (Electrical Discharge Machining). Tool inserts are built overnight or even in just a few hours. With DMLS, the freedom of design can be used to optimize tool performance, for example by integrating conformal cooling channels into the tool.

  • Data Sheets and Certifications

The Aviation Industry is highly regulated with demands and controls that ensure the safety and reliability of equipment and materials. Our aviation, space and defense customers can be confident that HARBEC retains a certified Quality Management System which is well implemented and designed to deliver increased customer satisfaction as a natural by-product of tracking key quality goals of on-time delivery and compliant product to our customers. Our processes are monitored to improve efficiency, ensure product safety and reliability while continually improving.

More Information >


The Medical Industry is highly regulated with demands and controls that ensure regulatory requirements and customer expectations are met. Our medical device customers can be confident that HARBEC retains a certified Quality Management System which is well implemented and designed to deliver increased customer satisfaction as a natural by-product of tracking key quality goals of on-time delivery and compliant product to our customers. Our ISO 13485 management system adopts a risk management approach which, while having these controls in place, eliminates hazardous situations throughout the product realization process.

More Information >


HARBEC is a registered ITAR company. International Traffic in Arms Regulations (ITAR) is a set of United States Government regulations on the export and import of defense related articles and services. Our Defense and Military customers can have complete confidence that HARBEC has an established and implemented ITAR compliance program and adhere to the strict guidelines set forth by ITAR and EAR statutes.

More Information >